



## **Features:**

- ♦ Hot pluggable QSFP56 MSA form factor
- ♦ Compliant to IEEE 802.3bs 200GBASE-LR4
- ♦ Up to 10km reach for G.652 SMF with FEC
- $\Rightarrow$  Single +3.3V power supply
- ♦ Operating case temperature:  $0 \sim 70^{\circ}$ C

- Transmitter: cooled 4x26.5625 GBaud/s LAN

   WDM TOSA (1295.56, 1300.05, 1304.58,
   1309.14nm)
- ♦ Receiver: 4x26.5625 GBaud/s PIN ROSA
- ♦ Maximum power consumption 7.5W
- $\diamond$  Duplex LC receptacle
- ♦ RoHS compliant

## **Applications:**

♦ 200GBASE-LR4 Ethernet Links

#### Part Number Ordering Information

| OPQH10 | QSFP56 LR4 10km optical transceiver with full real-time digital diagnostic |
|--------|----------------------------------------------------------------------------|
|        | monitoring and pull tab                                                    |

#### **1. General Description**

OPQH10 200GE QSFP56 Optical Transceiver modules are designed for use in 200 Gigabit Ethernet links over SMF28 single-mode fiber. They are compliant with the QSFP MSA and with IEEE 802.3bs 200GBASE-LR4 specification. Digital diagnostics functions are available via the I2C interface as specified by ACMIS4.0. The transceiver is RoHS 2.0 compliant and lead-free per Directive 2011/65/EU.

#### 2. Transceiver Block Diagram

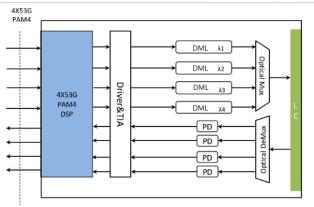
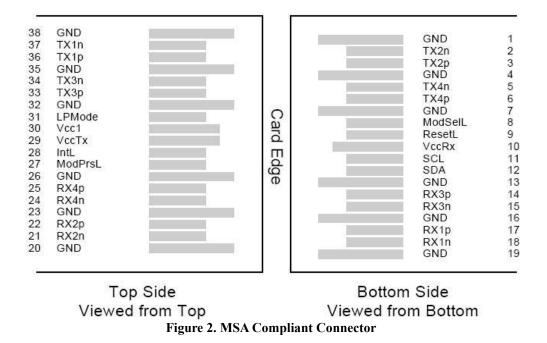




Figure 1. Transceiver Block Diagram

## Shenzhen Opway Communication Co., Ltd.3F, Building 5, Section 2, Baiwangxin High-tech Industrial Park,1002 Songbai Rd.,<br/>Nanshan, Shenzhen ,Guangdong,China 518000Tel: +86-755-86000306Fax: +86-755-86000825E-mail: info@opwaytech.comhttp://www.opwaytech.com



#### 3. Pin Assignment and Description





#### **Pin Definition**

| PIN | Logic      | Symbol  | Name/Description                     | Notes |
|-----|------------|---------|--------------------------------------|-------|
| 1   |            | GND     | Ground                               | 1     |
| 2   | CML-I      | Tx2n    | Transmitter Inverted Data Input      |       |
| 3   | CML-I      | Tx2p    | Transmitter Non-Inverted Data output |       |
| 4   |            | GND     | Ground                               | 1     |
| 5   | CML-I      | Tx4n    | Transmitter Inverted Data Input      |       |
| 6   | CML-I      | Tx4p    | Transmitter Non-Inverted Data output |       |
| 7   |            | GND     | Ground                               | 1     |
| 8   | LVTLL-I    | ModSelL | Module Select                        |       |
| 9   | LVTLL-I    | ResetL  | Module Reset                         |       |
| 10  |            | VccRx   | +3.3V Power Supply Receiver          | 2     |
| 11  | LVCMOS-I/O | SCL     | 2-Wire Serial Interface Clock        |       |
| 12  | LVCMOS-I/O | SDA     | 2-Wire Serial Interface Data         |       |
| 13  |            | GND     | Ground                               |       |
| 14  | CML-O      | Rx3p    | Receiver Non-Inverted Data Output    |       |
| 15  | CML-O      | Rx3n    | Receiver Inverted Data Output        |       |
| 16  |            | GND     | Ground                               | 1     |
| 17  | CML-O      | Rx1p    | Receiver Non-Inverted Data Output    |       |
| 18  | CML-O      | Rx1n    | Receiver Inverted Data Output        |       |
| 19  |            | GND     | Ground                               | 1     |
| 20  |            | GND     | Ground                               | 1     |
| 21  | CML-O      | Rx2n    | Receiver Inverted Data Output        |       |
| 22  | CML-O      | Rx2p    | Receiver Non-Inverted Data Output    |       |
| 23  |            | GND     | Ground                               | 1     |
| 24  | CML-O      | Rx4n    | Receiver Inverted Data Output        | 1     |
| 25  | CML-O      | Rx4p    | Receiver Non-Inverted Data Output    |       |
| 26  |            | GND     | Ground                               | 1     |
| 27  | LVTTL-O    | ModPrsL | Module Present                       |       |
| 28  | LVTTL-O    | IntL    | Interrupt                            |       |
| 29  |            | VccTx   | +3.3 V Power Supply transmitter      | 2     |
| 30  |            | Vcc1    | +3.3 V Power Supply                  | 2     |
| 31  | LVTTL-I    | LPMode  | Low Power Mode                       |       |
| 32  |            | GND     | Ground                               | 1     |
| 33  | CML-I      | Тх3р    | Transmitter Non-Inverted Data Input  | 1     |
| 34  | CML-I      | Tx3n    | Transmitter Inverted Data Output     |       |
| 34  |            | GND     | Ground                               | 1     |
| 36  | CML-I      | Tx1p    | Transmitter Non-Inverted Data Input  |       |
| 37  | CML-I      | Tx1n    | Transmitter Inverted Data Output     |       |
| 38  |            | GND     | Ground                               | 1     |

# Shenzhen Opway Communication Co., Ltd.3F, Building 5, Section 2, Baiwangxin High-tech Industrial Park,1002 Songbai Rd.,<br/>Nanshan, Shenzhen ,Guangdong,China 518000Tel: +86-755-86000306Fax: +86-755-86000825E-mail: info@opwaytech.comhttp://www.opwaytech.com



- 1. GND is the symbol for signal and supply (power) common for the QSFP28 module. All are common within the module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 3 below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the module in any combination. The connector pins are each rated for a maximum current of 1000mA.

#### 5. Recommended Power Supply Filter

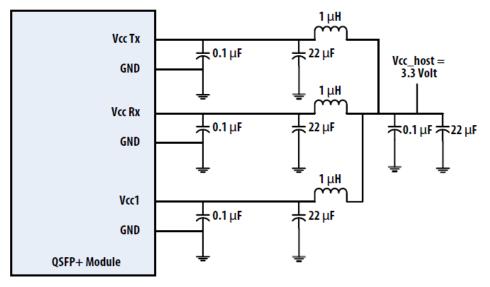



Figure 3. Recommended Power Supply Filter

#### 6. Absolute Maximum Ratings

It must be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

| Parameter                            | Symbol | Min  | Max | Units | Note |
|--------------------------------------|--------|------|-----|-------|------|
| Storage Temperature                  | TS     | -40  | 85  | degC  |      |
| Operating Case Temperature           | ТОР    | 0    | 70  | degC  |      |
| Power Supply Voltage                 | VCC    | -0.5 | 3.6 | V     |      |
| Relative Humidity (non-condensation) | RH     | 0    | 85  | %     |      |
| Damage Threshold, each Lane          | THd    | -3.0 |     | dBm   |      |

#### 7. Recommended Operating Conditions and Power Supply Requirements

| Parameter                  | Symbol | Min   | Typical | Max   | Units |
|----------------------------|--------|-------|---------|-------|-------|
| Operating Case Temperature | ТОР    | 0     |         | 70    | degC  |
| Power Supply Voltage       | VCC    | 3.135 | 3.3     | 3.465 | V     |

### Shenzhen Opway Communication Co., Ltd.

3F, Building 5, Section 2, Baiwangxin High-tech Industrial Park,1002 Songbai Rd., Nanshan, Shenzhen ,Guangdong,China 518000 Tel: +86-755-86000306 Fax: +86-755-86000825 E-mail: info@opwaytech.com http://www.opwaytech.com



| Data Rate, each Lane (PAM4) |   |   | 26.5625 |     | GBaud/s |
|-----------------------------|---|---|---------|-----|---------|
| Control Input Voltage High  |   | 2 |         | Vcc | V       |
| Control Input Voltage Low   |   | 0 |         | 0.8 | V       |
| Link Distance with G.652    | D |   |         | 10  | km      |

#### 8. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

| Parameter                                                                                                       | Symbol | Min               | Typical        | Max       | Units | Notes |
|-----------------------------------------------------------------------------------------------------------------|--------|-------------------|----------------|-----------|-------|-------|
| Power Consumption                                                                                               |        |                   |                | 7.5       | W     |       |
| Supply Current                                                                                                  | Icc    |                   |                | 2.28      | А     |       |
| Transceiver Power-on                                                                                            |        |                   |                | 2000      | ms    |       |
| Initialization Time                                                                                             |        |                   |                | 2000      | 1115  |       |
|                                                                                                                 |        | Transmitter (eacl | h Lane)        | 1         |       | 1     |
| Overload Differential<br>Voltage pk-pk                                                                          | TP1a   | 900               |                |           | mV    | 1     |
| Common Mode Voltage<br>(Vcm)                                                                                    | TP1    | -350              |                | 2850      | mV    | 2     |
| Differential Termination<br>Resistance Mismatch                                                                 | TP1    |                   |                | 10        | %     |       |
| Differential Return Loss<br>(SDD11)                                                                             | TP1    | 200GAUI-4 83      | E.3.1.3Equatio | n (83E–3) | dB    |       |
| Common Mode to<br>Differential conversion<br>and Differential to<br>Common Mode<br>conversion (SDC11,<br>SCD11) | TP1    | 200GAUI-4 83      | dB             |           |       |       |
|                                                                                                                 |        | Receiver (each ]  | Lane)          |           |       |       |
| Differential Voltage,<br>pk-pk                                                                                  | TP4    |                   |                | 900       | mV    |       |
| Common Mode Voltage<br>(Vcm)                                                                                    | TP4    | -350              |                | 2850      | mV    | 2     |
| Common Mode Noise,<br>RMS                                                                                       | TP4    |                   |                | 17.5      | mV    |       |
| Differential Termination<br>Resistance Mismatch                                                                 | TP4    |                   |                | 10        | %     |       |
| Differential Return Loss<br>(SDD22)                                                                             | TP4    | 200GAUI-4 83      | E.3.1.3Equatio | n (83E–3) | dB    |       |
| Common Mode to<br>Differential conversion<br>and Differential to<br>Common Mode<br>conversion (SDC22,<br>SCD22) | TP4    | 200GAUI-4 83      | dB             |           |       |       |
| Transition Time, 20 to 80%                                                                                      | TP4    | 9.5               |                |           | ps    |       |
| Far-end ESMW (Eye symmetry mask width)                                                                          | TP4    | 0.2               |                |           | UI    |       |
| Near-end ESMW (Eye symmetry mask width)                                                                         | TP4    | 0.22              |                |           | UI    |       |

## Shenzhen Opway Communication Co., Ltd.

3F, Building 5, Section 2, Baiwangxin High-tech Industrial Park,1002 Songbai Rd.,<br/>Nanshan, Shenzhen ,Guangdong,China 518000<br/>Tel: +86-755-86000306<br/>E-mail: info@opwaytech.comFax: +86-755-86000825<br/>http://www.opwaytech.com



| Near-end Eye height,<br>differential (min) | TP4 | 70 |  | mV |  |
|--------------------------------------------|-----|----|--|----|--|
| Far-end Eye height,<br>differential (min)  | TP4 | 30 |  | mV |  |

- 1. With the exception to 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- 2. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

#### 9. Optical Characteristics

|                                                                         | QSFP56           | 200GBASE | E-LR4   |         |       |       |  |
|-------------------------------------------------------------------------|------------------|----------|---------|---------|-------|-------|--|
| Parameter                                                               | Symbol           | Min      | Typical | Max     | Unit  | Notes |  |
|                                                                         | LO               | 1294.53  | 1295.56 | 1296.59 | nm    |       |  |
| Lane Wavelength                                                         | L1               | 1299.02  | 1300.05 | 1301.09 | nm    |       |  |
| Lane wavelength                                                         | L2               | 1303.54  | 1304.58 | 1305.63 | nm    |       |  |
|                                                                         | L3               | 1308.09  | 1309.14 | 1310.19 | nm    |       |  |
|                                                                         | Transmitter      |          |         |         |       |       |  |
| SMSR                                                                    | SMSR             | 30       |         |         | dB    |       |  |
| Total Average Launch Power                                              | PT               |          |         | 11.3    | dBm   |       |  |
| Average Launch Power,<br>each Lane                                      | P <sub>AVG</sub> | -3.4     |         | 5.3     | dBm   |       |  |
| Outer Optical Modulation<br>Amplitude (OMAouter), each<br>lane          | P <sub>OMA</sub> | -0.4     |         | 5.1     | dBm   | 1     |  |
| Difference in Launch Power<br>between any Two Lanes (OMA)               | Ptx,diff         |          |         | 4       | dB    |       |  |
| Launch power in OMAouter<br>minus TDECQ, each lane (min):               |                  | -1.8     |         |         | dBm   |       |  |
| Transmitter and dispersion eye<br>closure for PAM4 (TDECQ),each<br>lane | TDECQ            |          |         | 3.4     | dB    |       |  |
| Extinction Ratio                                                        | ER               | 3.5      |         |         | dB    |       |  |
| RIN <sub>15.6</sub> OMA                                                 | RIN              |          |         | -132    | dB/Hz |       |  |
| Optical Return Loss Tolerance                                           | TOL              |          |         | 15.6    | dB    |       |  |
| Transmitter Reflectance                                                 | R <sub>T</sub>   |          |         | -26     | dB    |       |  |
| Average Launch Power OFF<br>Transmitter, each Lane                      | Poff             |          |         | -30     | dBm   |       |  |
|                                                                         |                  | Receiver |         |         |       |       |  |
| Damage Threshold, each Lane                                             | THd              | 6.3      |         |         | dBm   | 2     |  |
| Total Average Receive Power                                             |                  |          |         | 2.0     | dBm   |       |  |
| Average Receive Power, each<br>Lane                                     |                  | -9.7     |         | 5.3     | dBm   |       |  |
| Receiver sensitivity (OMAouter),<br>each lane                           | SEN              |          |         | EQ122-2 | dBm   | 3,4   |  |
| Receiver reflectance                                                    |                  |          |         | -26     | dB    |       |  |

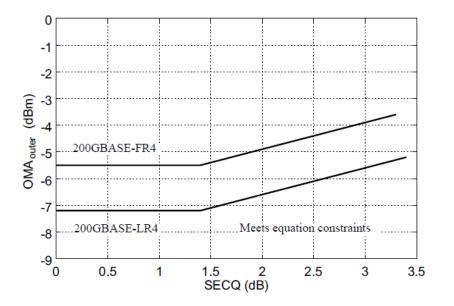
## Shenzhen Opway Communication Co., Ltd.

3F, Building 5, Section 2, Baiwangxin High-tech Industrial Park,1002 Songbai Rd.,<br/>Nanshan, Shenzhen ,Guangdong,China 518000<br/>Tel: +86-755-86000306<br/>E-mail: info@opwaytech.comFax: +86-755-86000825<br/>http://www.opwaytech.com



| Difference in Receive Power<br>between any Two Lanes<br>(Average and OMA) | Prx,diff |     | 5.1  | dB  |   |
|---------------------------------------------------------------------------|----------|-----|------|-----|---|
| LOS Assert                                                                | LOSA     | -30 |      | dBm |   |
| LOS Deassert                                                              | LOSD     |     | -9   | dBm |   |
| LOS Hysteresis                                                            | LOSH     | 0.5 |      | dB  |   |
| Stressed receiver sensitivity<br>(OMAouter), each laned (max)             |          |     | -5.2 | dBm | 4 |

- 1. Even if the TDECQ < 1.4 dB, the OMAouter (min) must exceed this value
- 2. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level on one lane. The receiver does not have to operate correctly at this input power.
- 3. Receiver sensitivity (OMA<sub>outer</sub>), each lane (max) is informative and is defined for a transmitter with a value of SECQ up to 3.4 dB for 200GBASE-LR4.


For 200GBASE-LR4, receiver sensitivity is informative and is defined for a transmitter with a value of SECQ up to 3.4 dB. Receiver sensitivity should meet Equation (122–2), which is illustrated in Figure 4

$$RS = \max(-5.5, SECQ - 6.9)$$
 (dB) (122-1)

$$RS = \max(-7.2, SECQ - 8.6)$$
 (dB) (122-2)

where

RS SECQ is the receiver sensitivity is the SECQ of the transmitter used to measure the receiver sensitivity



#### Figure 4. Eye Mask Definition

4. Measured with conformance test signal at TP3 (see IEEE 802.3cd 138.8.10) for the BER of 2.4E-4.

#### **10. Digital Diagnostic Functions**

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise

Shenzhen Opway Communication Co., Ltd.3F, Building 5, Section 2, Baiwangxin High-tech Industrial Park,1002 Songbai Rd.,<br/>Nanshan, Shenzhen ,Guangdong,China 518000Tel: +86-755-86000306Fax: +86-755-86000825E-mail: info@opwaytech.comhttp://www.opwaytech.com



| specified. |
|------------|
|------------|

| Parameter                               | Symbol       | Min  | Max | Units | Notes                            |
|-----------------------------------------|--------------|------|-----|-------|----------------------------------|
| Temperature monitor absolute error      | DMI_Temp     | -3   | +3  | degC  | Over operating temperature range |
| Supply voltage monitor absolute error   | DMI_VCC      | -5%  | 5%  | V     | Over full operating range        |
| Channel RX power monitor absolute error | DMI_RX_Ch    | -3   | 3   | dB    | 1                                |
| Channel Bias current<br>monitor         | DMI_Ibias_Ch | -10% | 10% | mA    |                                  |
| Channel TX power monitor absolute error | DMI_TX_Ch    | -3   | 3   | dB    | 1                                |

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

#### **11.Mechanical Dimensions**

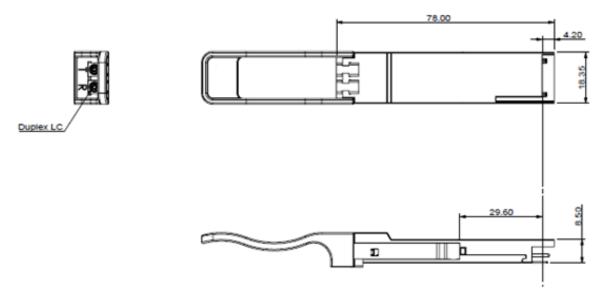



Figure 5. Mechanical Outline

#### 12. ESD

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

#### 13. Laser Safety

This is a Class 1 Laser Product according to EN 60825-1:2014. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Caution: Use of controls or adjustments or performance of procedures other than those specified here in may result in hazardous radiation exposure.

## Shenzhen Opway Communication Co., Ltd.

3F, Building 5, Section 2, Baiwangxin High-tech Industrial Park,1002 Songbai Rd., Nanshan, Shenzhen ,Guangdong,China 518000 Tel: +86-755-86000306 Fax: +86-755-86000825 E-mail: info@opwaytech.com http://www.opwaytech.com



OPWAY reserves the right to make changes to the products or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such products or information. 01.07.2021 Published by Shenzhen OPWAY Communication Co., Ltd. Copyright © OPWAY All Rights Reserved